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This work was motivated by the fact that the fracture toughness of composite materials is 
strongly related to the micromechanics of the fracture process. The effects of interfacial 
bonding, interfacial splitting, fiber pull-out, matrix cracking, fiber failure, etc. on the gross 
composite strength and toughness have been widely discussed in the literature. This work 
considers simplified analytical models of some of these mechanisms which permits quanti- 
tative evaluations of the roles of material properties as related to microfracture mechanisms. 

A micro-model of the interfacial region in a two-phase composite is analyzed. The model 
is a rectangular region loaded at the boundaries. The region is divided into Phase I and 
Phase I1 by a vertical line representing the interface. Several crack geometries are modeled 
including a crack in Phase I approaching the interface and extending to the interface, a 
crack extending along the interface and a crack penetrating the interface and extending into 
Phase 11. 

These models are analyzed by the finite element method incorporating a special crack-tip 
element. The concepts of linear elastic fracture mechanics were incorporated into the 
analysis and the fracture parameters G and K were determined for each of the crack 
geometries for a range of modulus ratios. These results are used to discuss the tendencies 
toward the various modes of crack progression as functions of the material and interfacial 
properties. 

INTRODUCTION 

The continuum approach of characterizing static and fatigue strength of 
homogeneous materials can be transferred directly to composite materials 

t Presented at the Symposium on “Interfacial Bonding and Fracture in Polymeric, 
Metallic and Ceramic Composites” at The Univ. of California at Los Angeles, Nov. 13-15, 
1972. This Symposium was jointly sponsored by the Polymer Group of So. California 
Section, ACS and Materials Science Department, U.C.L.A. 

4 Present address: Cryogenics Division, Institute for Basic Standards, National Bureau 
of Standards, Boulder, Colorado 80302, U.S.A. 
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50 C. W. FOWLKES 

although it is usually necessary to account for anisotropy with additional 
parameters.’ Fracture theories for homogeneous materials are all centered 
around some model of the crack tip region. The output of these theories is a 
relationship between the strength of the part and the size of the crack. Since 
parts made of homogeneous materials usually fail due to the propagation of 
a single crack from the largest flaw, these “one crack” theories have direct 
application. 

While the crack in a honiogeneous material is generally a single well 
defined discontinuity, and the fracture surface is relatively smooth, the 
fracture of a composite is generally accompanied by the formation and 
growth of multiple microcracks which are distributed over large regions in 
the material. Some of these microcracks eventually join to create a discon- 
tinuity through the part. The fracture mechanics concepts developed for 
homogeneous materials cannot be expected to apply in general to composite 
materials due to the fact that composite materials usually do not fail due to 
the propagation of a single crack. Two modes of composite fracture to which 
fracture mechanics could be applied are represented in the schematic drawings 
in Figure l(a).z The mode of fracture represented in Figure l(b) might be 
adequately described by fracture mechanics if the splitting was always 

(b) 

FIGURE la Composite fracture modes in which there is a single, well defined crack. 
FIGURE 1 b Composite fracture mode which exhibits splitting. 
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CRACKS NEAR A BI-MATERIAL INTERFACE 51 

limited to some small region near the “crack” tip and was independent of 
“crack” length.304 

Microfracture mechanics 

By suitably reducing the frame of reference to the microscale, it is pos- 
sible to arrive at a point at which the frame of reference includes only one 
crack. This procedure is schematically represented in Figure 2. At the 
microfracture level, since there is only a single crack, it is possible to apply 
the concepts of fracture mechanics, and to characterize the tendency for 
the crack to propagate. In Figure 2, several basic modes of microfracture 

The high fracture toughness of composites is in general due to the fact that 
the reinforcement (or the matrix) will act as crack arrestors. The micro- 
fracture event associated with this mechanism is the case of a crack inter- 
cepting an interface. The toughness of the bulk composite material will 
normally be increased if the crack is arrested at the interface and subse- 
quently splits and propagates along the interface. Splitting is schematically 
represented in Figure l(b). 

are identified.5. 6,7,8.9.10.11,12,13,14 

MACROSCOPIC MICROSCOPIC Crack Splitting 
Along Interface 

FIGURE 2 Some basic microfracture modes. 
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52 C. W. FOWLKES 

In this paper several micromechanical fracture modes which relate to the 
splitting of the crack as it intercepts a bi-material interface are analyzed. 
Finite element fracture analyses are performed and the implications of the 
results to composite fracture are discussed. 

Fracture mechanics 

Fracture mechanics deals with crack propagation phenomena and is con- 
cerned with the stability of pre-existing flaws. This technology has produced 
specific parameters which serve to characterize the resistance to crack 
propagation or fracture toughness of homogeneous materials. Two common 
parameters used in linear elastic fracture mechanics are G and K.  G is based 
on energy considerations and for a cracked body having a crack of length a 

where U is the internal energy of the body. This parameter was first proposed 
by GrifithI5 in the course of his experiments on the fracture of glass and 
later extended to other structural materials by Trwin16. K for a cracked 
body is of the general form 

(2) 

where o is applied stress, a is the crack length and C depends on the geometry 
of the body. For a particular structure containing a crack and subjected to 
some load, G is termed “the crack extension force” and K is termed “the 
stress intensity factor”. 

For a particular material there are critical values of G and K which corre- 
spond to the onset of crack propagation. These quantities are symbolized by 
G, and K, where G, is termed “the fracture toughness” and K, is termed “the 
critical stress intensity factor”. 

For problems of in plane loading the two modes of crack surface displace- 
ment are classified as opening mode (I) and sliding mode (11). A drawing 
illustrating these modes of displacement is shown in Figure 3. Separate 
stress intensity factors ( K )  and strain energy release rates (G)  are identified 
with the two modes of crack displacement by attaching the subscripts I and 
II. The stress intensity factor for a structure containing a crack and loaded 
so as to cause crack displacement of type I opening mode is denoted as KI.  If 
the crack is subjected to more than one mode of displacement the situation 
is referred to as “mixed mode”. The stresses and displacements for mixed 
mode are combined by superposition. 
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CRACKS NEAR A RI-MATERIAL INTERFACE 53 

(b )  

FIGURE 3a Opening displacement, FIGURE 3b Sliding displacement, Mode 11. 
Mode I. 

The relationship between GI and Kl for plane strain is given by Irwin17 as 

where E is Young’s modulus and v is Poisson’s ratio. 
Fracture mechanics thus provides a design procedure which can be used 

to predict crack extension. The first step is to determine the constant C and 
hence K, in (2) which depends on the geometry and type of loading. The next 
step is to determine K,, for the material using a suitable laboratory fracture 
toughness specimen. Setting K, = K,, in (2) results in critical combinations 
of stress and crack length. Thus for a given flaw size or crack length deter- 
mined by inspection of the structure, the load causing crack extension is 
known from (2). 

Cracks parallel to a bi-material interface 

Several investigators have worked on analytical solutions for the stress fields 
in the region of a crack on a bi-material interface. Muskhelishvili’* presented 
an elasticity solution to the problem of a stamp of one material of finite 
width pressed onto a semi-finite half plane of a second material. Although 
this was not a crack problem, the method of solution which used the eigen- 
function expansion approach was later used for the solution of crack prob- 
lems. 

Williamslg considered the plane problem of dissimilar materials with a 
semi-infinite crack along the bi-material interface. Near the crack tip the 
stresses were found to follow the 4; singularity as in homogeneous materials 
where I’ is a polar coordinate about the crack tip. The eigenfunction-expan- 
sion approach was used and the solution predicted oscillating stresses in the 
region of the crack tip. ErdoganZ0 considered the problem of two semi- 
infinite elastic planes with different elastic properties bonded to each other 
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54 C .  W. FOWLKES 

along a finite number of straight-line segments and subjected to loads at 
infinity. Using an analysis procedure similar to the above, Erdogan’s results 
likewise predict a & singularity and oscillating stresses near the crack tip. 
Erdogan carries the problem further by defining a stress intensity factor for 
this geometry. 

Rice and Sih21*22 expanded Williams’ work on a model consisting of a 
semi-infinite crack lying along a bi-material interface with concentrated 
forces acting on a crack face. They carried their results to the determination 
of the stress intensity factors. 

Sih23J4 has presented solutions for several multiple-layer models con- 
taining cracks along the interfaces and cracks in the sandwiched layer 
parallel to the interfaces. For the cases of interfacial cracks the characteristic 
singularity is the same as in the previously reported problems. It might be 
noted that for some cases of an interlaminar crack the nature of the singu- 
larity departs from J; as the thickness of the layer containing the crack 
becomes small. Sih also suggests that since the oscillating characteristic of 
the stresses has never been observed experimentally the models used for 
these analyses may not be entirely valid. In Ref. 23 the relationship of these 
results to composite microfracture is discussed. 

A limiting case of a crack in a sandwiched bi-material model is the case of 
the fracture of an adhesive joint, References 7 and 25 explore the application 
of the concepts of linear elastic fracture mechanics to the fracture of adhesive 
joints. These experiments were interpreted from a Griffith energy viewpoint 
and this resulted in a meaningful fracture criteria. 

Tensile tests of butt-joined epoxy aluminum plates containing single cracks 
along the bond surfaces have been reported in Ref. 26. The results were 
compared to the theories presented by Erdogan and Sih and Rice and agreed 
reasonably well for a specified range of crack lengths. 

Cracks perpendicular to a bi-material interface 

Zak and Williams,27 as a continuation of Williams’ analysis of a crack lying 
along an interface, presented a solution for the stress field in the region of a 
crack perpendicular to a bi-material interface with the crack tip on the inter- 
face. They established equations for the stresses in terms of eigenfunctions 
and one undetermined constant and evaluated the effect of the elastic moduli 
on the form of the stress singularity. As with the previous eigenfunction 
solutions, oscillating stresses result at the crack tip. In contrast to the solution 
for a crack in a homogeneous material or parallel to and on a bi-material 
interface, they found that the characteristic singularity varied as r A + l  where 
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CRACKS NEAR A BI-MATERIAL INTERFACE 55 

A is an eigenparameter and depends on the material properties. They did not 
report the magnitudes of the stress components in the region. 

In a later paper, Swenson and RauZ8 extended the analysis of Williams and 
Zak. They solved for the relative stresses for plane stress and plane strain to 
within an arbitrary constant for an unspecified case of symmetrical plane 
loading. They presented results for the relative near-tip stress components at 
points ahead of the crack tip and along the interface located at an arbitrary 
radius. These stress ratios were determined for a wide range of moduli and 
the implications of the results to composite fracture were discussed. No 
attempts were made to relate these results to the concepts of fracture mech- 
anics. 

A recent paper by LeverenzZ9 reports the results of a finite element analysis 
of a cracked bi-material plate where the crack is oriented normal to but not 
touching the bi-material interface. Since the crack tip was totally contained 
in one of the homogeneous mateiials and was some distance from the inter- 
face a square root singularity was assumed. The author presents values for 
K, for a range of moduli and crack lengths. 

The theory of linear elastic fracture mechanics is based on the J; singu- 
larity. Experience has shown this concept to be operationally valid for 
predicting critical conditions in some types of problems. Problems having 
some different type of singularity may require the evolution of another 
fracture theory. This is the situation which arises in the case of cracks near 
a bi-material interface. 

Finite element fracture analysis 

Analytical solutions for the fracture parameters GI or KI are available for 
several simple geometries and loading conditions. For finite structures, com- 
plicated loading and irregular cracks, approximate methods must be used to 
determine the stress intensity factors. The finite eIement method has recently 
been applied as an analytical tool to fracture problems. 

The finite element method approximates the continuum as a finite assem- 
blage of finite elements. These elements are interconnected at a finite number 
of nodal points and are subjected to some of the constraints that exist in a 
continuum. Internal forces are transmitted through the interior nodes. Finite 
element analysis is widely used and the procedures are well documented in 
numerous papers and books.30 The constant strain triangular elements 
(CST) were used in this paper except where noted otherwise. 

The earliest papers concerning the application of finite element analysis 
toward the determination of GI and KI appeared a few years ago. Since then 
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56 C. W. FOWLKES 

a large number of papers have been published proposing a variety of ap- 
proaches to the problem. A recent survey of these approaches is contained in 
Ref. 31. The approaches can be generally classified as energy methods and 
direct (stress or displacement) methods and are outlined below. 

Total energy method 

The total energy approach is based on the definition of G given in (1). [Jsing 
this method a finite element idealization of the body containing the crack is 
constructed. This problem is solved and the total internal energy is deter- 
mined by either computing the external work or by summing the element 
strain energy. The crack length is then changed by a small amount Aa and 
the problem is solved again and the new strain energy determined. The 
quantity AU/Aa can be determined from the two solutions and is a numerical 
approximation of aU/& as defined in (1).32*33 

Local energy methods 

gives an expression for the crack extension force in terms of the 
strain energy density in a circular region surrounding the crack tip. This 
method of calculating the stress intensity factor has not been extensively 
used due to the necessity of defining a circular region in the finite element 
net.31 

Another local energy method is referred to as the J-integral method. J is 
defined in terms of a line integral along an arbitrary contour enclosing the 
crack tip.34 The J-integral has been used for finite element fracture analysis 
by several i n ~ e s t i g a t o r s . ~ ~ * ~ ~ ~ ~ ~ - ~ ~  

Direct methods 

The direct methods are based on the well known crack tip  equation^.'^ A 
finite element solution will yield approximate values of stress and displace- 
ments at discreet points in the body. At points near the crack tip, values of 
stress or displacement from the finite element solution may be substituted 
into the crack tip equations and these equations solved for KI. 

Since displacements are the fundamental quantities determined from the 
finite element solution, values KI determined from the crack tip displacement 
equations are more reliable.31*32~35*37 
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CRACKS NEAR A BI-MATERIAL INTERFACE 57 

Displacement method 

Most investigators also agree that KI is most accurately determined by using 
the nodal displacements along the free surface of the crack. The stresses in 
the crack tip region vary as l/&, leading to steep gradients and a singularity 
in stress at the crack tip (r = 0). If constant strain elements (CST) are used 
a very large number of elements must be placed in the near-tip region in 
order to model these steep  gradient^.^^.^^.^^.^^ Comparisons of finite element 
solutions with known solutions show that KI can be determined to within 
4 percent using (approximately) 500 CST elements.32Js If the total number 
of elements is increased and the mesh near the crack tip is dense and distri- 
buted as &, K, may be determined to within nearly I percent.32 

The displacement of the node nearest the crack tip can be used but an 
improvement in the value of KI can be obtained if several values of displace- 
ment along the crack face near the tip are used and the resulting curve 
extrapolated back to r = 0 and the intercept taken as the value of KI. It 
has been shown that this procedure results in the best estimate of KI for a 
finite element fracture s o l ~ t i o n . ~ ~ . ~ ~  

Crack tip element 

In order to reduce the number of elements required and the subsequent cost 
of finite element fracture analysis several investigators have devised special 
crack tip e l e m e ~ i t s . ~ ~ ~ ~ ~ * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  Although the formulations of the various 
elements are digerent they share the common feature of having displacement 
functions of the form of the crack tip displacement equations. It has been 
demonstrated that if the dense net of CST elements surrounding the crack 
tip is replaced by a single38 or severa137*39*42 special crack tip singularity 
elements the computation time is reduced and the accuracy is improved. 

A crack tip element developed by Wilson3' was used for the problems 
considered in this report. This element is triangular in shape and has a 
displacement function which approximates the & singularity. This element 
is referred to as the SST element and a detailed discussion is given in Ref. 37. 

For the problems analyzed in this paper, 12 SST elements were used having 
a radius of approximately 10 percent of the crack length. The models had 
from 130 to 185 nodes. The stress intensity factors were computed from the 
displacement of the first node. In some cases it was possible to use the extra- 
polation method and for these cases the extrapolated value is presented in 
addition to the first node value. The total and local energy methods were also 
used where appropriate. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
0
7
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



58 C .  W. FOWLKES 

General description of models 

The models analyzed in this paper consist of bi-material plates having cracks 
in the region of the bi-material interface. These plates are taken as micro- 
mechanical models of an interfacial region in a composite material containing 
a flaw or crack. The relationship of the micromodel to the composite region 
is indicated in Figure 4(a). 

A -  

R -  

F -  

Applied uniform 
normal displacement 

Restrained normal 
displacement 

Free boundary 
(crack surface) 

F R X 

( b )  

FIGURE 4a Relationship of the micromodel to the composite material. 
FIGURE 4b Symmetrical quarter-section analyzed. 
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CRACKS NEAR A BI-MATERIAL INTERFACE 59 

The boundary conditions applied to the model are uniform vertical 
displacements of the upper and lower edges and a zero horizontal displace- 
ment of the sides. Due to symmetry about both the centerlines of the model 
only a symmetrical quarter section of the model was analyzed. A typical 
quarter section with appropriate boundary conditions is shown in Figure 
4(b). The finite element net used for Model 11 is typical and is shown in 
Figure 5. In this figure the rollers symbolize a boundary having normal 
displacements restrained and the arrows along the upper boundary indicate 
a uniform applied displacement. 

FIGURE 5 Finite element net, Model 11. 
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60 C. W. FOWLKES 

Five modes of crack progression through the interfacial region were 
modeled : 

I. Crack approaching the interface. 
11. Crack tip on the interface. 

111. Crack progression along the interface (splitting). 
IV. Crack progression through the interface. 
V. Crack progression along and through the interface. 

Schematic drawings of the five quarter-section models are shown in Figure 
6. The displacements of the crack surfaces have been exaggerated in these 
drawings for clarity. These models are subsequently referred to by these 
Roman numerals as Model I, Model 11, etc. 

Cbl Model'II 

R mR 
F R 

A - Applied uniform normal 
displocement 

R-Restrained normal 
displacement 

F - Free boundary 
(crock surface) 

FIGURE 6 Schematic drawings showing the position of the crack in the five model 
analyzed and nomenclature. 
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CRACKS NEAR A BI-MATERIAL INTERFACE 61 

Model verification 

Two initial runs were made with each model to verify the input data and the 
calculation of the fracture parameters. As an initial verification, the nodes 
along the entire crack face were fixed. This model represents a uniformly 
stressed tensile specimen and the element stresses can'be compared to known 
values. 

After completing the first verification, the crack was modeled by releasing 
the constraints on the crack face nodes and the material properties in both 
sides of the model were equal. The analytical solution for KI for an infinite 
homogeneous plate containing a regular array of colinear cracks and sub- 
jected to uniform tension at infinity is given as 

K ,  = 6, J2b Tan - -\i ;; (4) 

where om is the tensile stress at infinity, a is the half-crack length and 0 is 
the spacing of the cracks." 

Although exact agreement cannot be expected due to the finite height of 
the models, the finite element solutions were compared to the infinite plate 
solution of (4). The stress intensity factor KI was computed using the J- 
integral, K,Q, the local energy, KI(LE), the displacement of the first node 
of the SST element, K,(SST) and the extrapolated value at r = 0, KI(EXT). 
These results are shown in Table I for the three models having horizontal 
cracks. Comparison of the values in Table I shows that most of the calculated 

TABLE I 
Comparison of stress intensity factors from the finite element solution to the analytically 

determined value. 

A11 stress intensity factors have units of psi qig 

stress intensity factors agreed with the infinite plate solution to within about 
10 percent. It is judged that the extrapolated values are the best values even 
though they depart from the infinite plate solution by the widest margin. 
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62 C. W. FOWLKES 

Dimensions and definitions 

The dimensions of the models, the coordinate system and transverse crack 
length are defined in Figure 7(a). The bi-material interface divides the body, 
the material on the left side of the interface is referred to as Material 1 and 
the material on the right as 2. Material properties or stresses associated with 
material 1 are denoted by the superscript ( l ) ;  

In all cases the models were loaded with a uniform displacement of 0.01486 
inches along the upper boundary. For the homogeneous uncracked tensile 
models with E") = E t Z )  = lo6 psi and v ( l )  = P) = 0.3 this displacement pro- 
duced the uniform stresses uy = 1000 psi, cr, = 428.67 psi and ox,, = 0 psi. 
This displacement was effected using an approximate method described by 
Zienkiewic~.~~ The uniform displacement boundary loading was chosen for 

dl), etc. 

FIGURE 7a Model dimensions. 
FIGURE 7b Definition of interfacila crack length and the interfacila stress components. 
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CRACKS NEAR A BI-MATERIAL INTERFACE 63 

these tests so that displacements and hence fracture parameters computed 
from the displacements could be compared from model to model. 

Along the interface there are four independent components of stress: a,, 
a;'), af) and a,,, where the superscripts refer to materials 1 and 2. The 
stresses a:') = ak2) and 012' = a:;) due to equilibrium along the interface. 
These stresses are defined along with their location d, in Figure 7(b). In 
models having an interfacial crack, the crack length is referred to as a, as 
defined in Figure 7(b). 

The effect of modulus ratio R, where R = E(')/E'2), on the stress inten- 
sity factor was evaluated by assigning to R the spectrum of values 1/20, 1/10, 
1/5, 1,  2, 5, 10 and 20. Unless otherwise noted the Young's modulus of 
material 2 was kept constant at lo6 psi and Poisson's ratios for both 1 and 2 
were kept constant at 0.3. In the original the stress distributions 
along the interface were also presented. These results have some implications 
concerning interfacial fracture but were judged too voluminous for the 
present paper. 

Model I 

Model I contains a horizontal crack, a = 9 inches, which resides in material 
I ,  Figure S(a). The crack tip is one inch from the bi-material interface. 

The stress intensity factors were determined for the spectrum of modulus 
ratios 1/20 I; R 5 20 and are shown in Figure 8. These stress intensity 
factors were calculated using the displacement of the SST element, the 
extrapolation method and the local energy method as previously discussed. 

These data are well represented by the straight line shown in Figure 8. The 
equation of this line is K, = 4020R. This variation in stress intensity factor 
for the bi-material plate is thus of the same form as the variation in KI with 
modulus for a homogeneous plate subjected to uniform boundary displace- 
ment. It can be inferred from this similarity that the crack tip is sufficiently 
far from the interface for the square root singularity to be valid. 

Comparison of the four interfacial stresses showed that a;') is the largest 
stress, particularly for large R, and that both 0;') and ox,, show severe 
gradients approaching the crack region. The values of a, were much lower 
and more uniform. Probable modes of interfacial fracture would be crazing 
normal to the interface due to the high a?) and mode I1 crack propagation 
close to the crack region due to the steep gradients of a,,,. Since the values of 
a, were relatively smaller the tendency toward mode I interfacial crack 
propagation would be small. Due to the direction of the maximum principal 
stress the crack might tend to curve up above the horizontal plane and 
intercept the interface at some higher point. 
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lo00 - 

F 
7 3  100- n 

(v -  

‘0 
Y 
Y 

10 - 

I I 
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FIGURE 8 Variation of stress intensity factor with modulus ratio, R ,  for Model I.  

Model II 

The crack tip in Model I1 is on the bi-material interface and the crack 
length, a, is 10 inches, Figure 5(b). 

A stress intensity factor is not defined if the singularity departs from JF 
However, some idea of the “severity” of the crack can be gained by inspecting 
the profiles of the free surface of the crack for the spectrum of R. These 
profiles are shown in terms of the crack tip coordinate r in Figure 9. It can 
be seen that when the modulus of material 1 containing the crack is increased 
the displacements of the crack surface near the tip increase and the average 
slopes of the near tip profiles increase. If profiles like these were determined 
for a homogeneous material, these increased displacements would be inter- 
preted as proportional to increases in the stress intensity factor. It would 
seem physically plausible to suppose that since the crack is opened more as 
R increases, the severity of the crack or the tendency of the crack to propa- 
gate will be increased. 

The main features of the stress distributions were very large values of 
“61) and nXy along the interface near the crack tip for large R. The gradients 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
0
7
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



CRACKS NEAR A BI-MATERIAL INTERFACE 65 

- 
0 I 2 3 4 5 6 7 8 9 10 

r ,  in 

FIGURE 9 Crack surface profiles, Model 11, for various modulus ratios R. 

of the stresses near the crack tip increase markedly for high values of R 
indicating the increased severity of the singularity. Generally the stress 
concentrations for oil), of), and ox,, were evident near the crack tip. The 
values of ox, though generally lower, were effected at larger distances along 
the interface which could cause splitting of the crack. 

The analyses of Wi l l iam~’~ and Swenson28 showed that if the crack tip is 
on a bi-material interface the singularity will not be proportional to r112 but 
will be proportional to ra where A is an eigen parameter and depends on the 
material properties. It was found that the dependence of h on material proper- 
ties given by Swenson28 corresponded within limits to the results of the 
finite element analysis of Model 11. A more complete discussion of this 
dependence is given in the complete work.43 

Model 111 

An analysis was made of the strain energy release rate associated with the 
propagation of a crack along the bi-material interface. The initial configura- 
tion was a model of a horizontal crack, a = 10 inches, with the crack tip 
on the interface. A crack of varying length, a,, extending up the interface 
was then modeled, Figure 5(c). 

A total of six interfacial nodes were released in sequence to model an 
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66 C. W. FOWLKES 

interfacial crack initially of zero length and reaching a maximum length of 
a, = 4.8 inches. For each crack length the external work applied to the 
model was computed by numerically integrating the slress across the dis- 
placed upper boundary. For an elastic body the change in internal energy is 
equal to the external work. Thus a curve of work versus crack length can be 
constructed from the seven finite element solutions and this curve differen- 
tiated to determine aZJjda and hence G. 

An energy analysis was made for two material combinations; glass-resin 
and resin-glass. The modulus ratio of the glasslresin was taken as 20 and the 
Poisson’s ratios for the glass and resin were taken as 0.2 and 0.35, respec- 
tively. A uniform boundary displacement of 0.01468 inch was applied to the 
upper boundary as in the previous models. 

The curve of internal energy versus crack length in the one inch thick plate 
for the glass-resin combination is shown in Figure 10 and for the resin-glass 

l- 1 I 1 I 1 
0 I 2 3 4 5 

CRACK LENGTH, In 
FIGURE 10 The change in internal energy for fixed boundary displacement and varying 
interfacial crack length, uJ, for glass-resin material combination. 

combination is shown in Figure 11. Note that the energy changes for the 
resin-glass model were very small. These curves were differentiated graphic- 
ally at each value of crack length to determine G. 

The curves of G versus crack length are shown in Figures 12 and 13 for the 
glass-resin and the resin-glass combinations respectively. Due to the fixed 
displacement boundary conditions the value of G decreases with increasing 
crack length in both cases with the glass-resin combination showing the 
largest decrease. 
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t 
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0 I 2 3 4 5 

CRACK LENGTH, In 

FIGURE 1 1  
interfacial crack length, a,, for resin-glass material combination. 

The change in internal energy for fixed boundary displacement and varying 

0 I 2 3 4 5 
CRACK LENGTH, in 

FIGURE 12 Variation in mixed mode crack extension force, G, with interfacial crack 
length , glass-resin combination. 
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CRACK LENQTH, in 

riation of mixed mode crack extension force, G ,  with interfacial crac 
ss combination. 

FIGURE 
length, res 

3 
I-gl 

The applied boundary conditions produce both opening mode (I) and 
sliding mode (11) displacements of the interfacial crack. The value of G 
determined from the total energy analysis is made up of the sum of the 
opening mode component GI and the sliding mode component GI,. The 
individual values of GI and G,, cannot be directly determined from the total 
energy analysis. 

The displacements of the crack surface may be used with the extrapolation 
method to estimate the mode I and mode I stress intensity factors K, and 
K,,.3s In the case of this model these estimates are only approximate due to 
the very coarse element net in this region. Far an interfacial crack 4.8 inches 
long, K, and K,, determined from the displacements were the same order of 
magnitude. For shorter cracks the stress intensity factor K,, associated with 
the shear mode was larger than K,. This comparison was not made for 
cracks shorter than 2.02 inches due to the coarse element net. 

The relative values of K, and K,, can be put into terms of GI and GI,.  
Taking these values a curve of G,/GI, versus crack length can be constructed, 
Figure 14, to qualitatively indicate the effect of this fracture mode transition 
of the relative values of GI and GI,. The application of these results to com- 
posite fracture are discussed in detail in a later section. 
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0 
0 I 2 3 4 5 6 

CRACK LENGTH, in 

FIGURE 14 Estimated effect of the fracture mode transition on the relative values of 
GI and GIl .  

Model IV 

Model IV, Figure 5(d), contains a crack 11 inches long which extends 
entirely through material 1, penetrates the interface and extends one inch 
into material 2. Since the crack tip is completely enclosed in material 2 it was 
assumed to have a square root singularity. The stress intensity factors were 
computed from the displacements of the first node of the SST element. Since 
the remainder of the crack surface was in material 1 the extrapolation 
method did not apply. 

The stress intensity factors were computed for the spectrum of moduli 
1/20 < R < 20 using the displacement of the SST element and the local 
energy. These values are shown in Figure 15. The differences between 
K,(SST) and K,(LE) are larger than in the other models for extreme values 
of R. The calculation of Kr(LE) involves squaring the local stresses. Since 
these elements are large and near the material discontinuity any discrepancy 
in the finite element approximation to the stresses is amplified. The values of 
K,(SST) are probably the more accurate and values of K,(EL) are included 
here only for qualitative comparison. 

A straight line, Kr = 3686.0 R0.4, has been drawn tangent to the data in 
the region of R = 1. Compared to Model I, Figure 8, these stress intensity 
factors are seen to be much less sensitive to changes in R and depart slightly 
from a linear relationship. This behavior would be expected due to the 
boundary conditions and to the manner in which the moduli were varied. 
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FIGURE 15 Variation of stress intensity factor with modulus ratio, Model 1V. 

Although the values of a?) and CT?) are zero at the free surface of the 
crack the finite element analysis showed some stress concentrations along 
the interface near the crack face as R increases. These stress concentrations 
are due to the discontinuity in material properties. Although a?) and a?) 
were generally smaller than Models I and 11, a, was relatively larger for 
large R indicating that there is a splitting force as the crack emerges from 
the stiffer phase. 

Model V 

Model V contains a primary crack which extends through material 1 and 
one inch into material 2 in a manner identical to Model IV. In addition to 
this primary crack, Model V has a secondary crack which extends along the 
interface, Figure 5(e). The purpose of this model was to study the inter- 
actions of the primary and secondary cracks. 

Two interfacial crack lengths were modeled: a, = 1.25 inches and u, = 
4.8 inches. For each of these crack lengths the modulus ratio, R, was set to 
1/20, 1 and 20 and the stress intensity factors of the primary crack were 
determined using the displacement of the SST element. 

The results for the two crack lengths are shown in Table 11. For comparison 
Table I1 also includes the stress intensity factors for the case of no interfacial 
crack determined from Model IV. The stress intensity factors of the primary 
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CRACKS NEAR A BI-MATERIAL INTERFACE 71 

TABLE I1 
Stress intensity factors. Model V. 

In t e r f ac i a l  Modulus 
Crack Length Ratio,R 

1/20 

(no crack) 1 

20 

1/20 

a = 1.25 in .  1 I 

20 

1/20 

a = 4.8 in .  1 I 
20 

- KI 
(ps i  /in. 

1751 

3690 

8964 

2366 

4189 

9173 

4459 

6515 

9718 

crack increase as the interfacial crack length increases. This increase is 
proportionally larger for large R. 

This behavior forms the basis for a two-step crack propagation sequence. 
Assume for example that there is a flaw in material 2 represented by the 
primary crack but that the stress intensity factor is less than the critical 
value. If there is a flaw in the interface or if the interface bond is weak a 
secondary crack may progress along the interface while the primary crack 
remains stationary. The results from Model V indicate that as this secondary 
crack progresses the stress intensity factor of the primary crack is increased 
and hence after some interfacial crack extension the primary crack would 
extend. This two-step process is observed in composite fracture. These inter- 
actions are discussed in greater detail in the next section for the glass and 
resin material combinations. 

The microfracture game 

If the fracture toughness values G, of phase (l) ,  phase (2), and the interfacial 
bond between (1) and (2) are known for some particular composite then one 
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72 C. W. FOWLKES 

has the informaton to play a microfracture game. The five models are 
analyzed for this material combination and the stress intensity factors or the 
crack extension force G is determined. By comparing G for the various 
modes to the appropriate G, one has a basis for predicting or deciding which 
mode is most probable. A sample microfracture game for the particular 
material combinations of glass and resin are given below. 

Critical values, G, 

Typical values of the critical crack extension force G,, for glass, resin and the 
interface were taken from the literature. These values are shown in Table I11 
along with normalized values G, and G, obtained by dividing the values for 
the critical crack exteiision force by the critical crack extension forces for 
glass and resin, respectively. 

The critical values for resin have been determined using cracked-plate 
models and the interfacial toughness for opening mode displacement G,, has 
been determined using a double cantilever beam ~pecimen.~ 

The author is not aware of any interfacial fracture toughness data for 
shear mode 11. Values of GIIc are usually much greater than the value of 
GI,  for a given material. Fracture data given in Ref. 4 for unidirectional 
glass-resin laminates suggest that GIIc may be on the order of 10X GI,. This 
value was taken as a plausible estimate of GIIc for the interface and is shown 
with the other data in Table 111. 

Critical values for glass are given by several investigators. Griffith15 found 
a value of 0.00624 lb/in., Shand relates values between 0.0065 and 0.0150 
lb/in. for different types of glass, Irwin17 gives values between 0.04 and 0.08 
lb/in. for lantern slide glass and L o w ~ i e ~ ~  presents a value for the surface 
energy for E-glass which corresponds to a fracture toughness of 0.00456 
lb/in. For the purposes of this discussion a nominal value of G, of 0.006 
Ib/in. was used, Table 111. 

The Griffith” equation relating tensile strength and crack size is given as 

af = Jz 
also 

2Y G, = - 
(1 - v’) for plane strain 

where nf is the tensile stress at failure, y is the surface energy and c is the 
crack depth. Shand tested glass rods inch in diameter having surface cracks 
approximately 0.001 to 0.010 inch deep and his results agreed closely with 
the Griffith relationship, (5 ) .  Experiments by Shand, Anderson46 and others 
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CRACKS NEAR A BI-MATERIAL INTERFACE 73 
TABLE 111 

Critical values, G, (lb/in.) 

Ma ter ia 1 Nominal Value 

G I c  

Glass 0.0006 

Resin 5.6 

In te r face  1.0 

Normalized t o  

Glass Resin 
- 

G G I c  -1c 

1.0 0.00107 

9 35 1.0 

167 0.179 

In te r face  

Model values, G and K 

G and K for Models I through V were determined for the particular material 
combinations of resin-glass and glass-resin. A glass/resin Young’s modulus 
ratio of 20 was used and the Poisson’s ratios of the glass and resin were taken 
as 0.2 and 0.35 respectively. For the first comparison the material constants 

- 
G 

10.0 1670 1.79 

I I C  G I I c  -1Ic 
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1 - Resin 
2 - Glass 

I 

n 

m 

Ip 

P 

P 

[ (2441) I (104.8) I (137.0) I (1.0) I 

I 1463 I 2.05 I 2.67 I 0.00107 1 

I 2074 I 4.13 I 5.4 I 0.00107 I 

I 4174 I 16.75 I 21.9 I 0.00107 I 
( N A )  not available 
( I  1 values for the crack tip in circle 0 
(2 )  normalized to the value for resin. 
( 3 )  decreases as the crack proceeds along 

( 4 )  Mode I 
( 5 )  Mode R 

interface, see Figure 14. 

FIGURE 16 Fracture parameters associated with the various modes of crack propagation 
in the region of a resin-glass interface. 
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CRACKS NEAR A BI-MATERIAL INTERFACE 75 

for resin were assigned to the left side of the model and the material constants 
for glass were assigned to the right side. 

Figure 16 contains schematic diagrams of the models indicating the 
position of the crack in each model along with the associated fracture para- 
meters determined from the finite element solution for that model. Model V 
is shown for the two cases of a short interfacial crack (1.25 inches) and a 
long interfacial crack (4.8 inches). 

The first column in Figure 16 shows the stress intensity factors as deter- 
mined from the displacements of the SST elements. As discussed previously 
the stress intensity factors are not defined if the crack tip is on the interface, 
Model 11. The numbers shown in the parentheses beside this model were 
computed using the displacement of the SST element and the material 
properties of material 1. If the crack tip were enclosed in material 1 as in the 
case of Model I this number would be a stress intensity factor. Since the 
crack tip is actually on the interface this number is not a stress intensity 
factor but since it is directly proportional to the opening displacement of the 
crack surface this number can be compared to the stress intensity factor for 
Model I to determine the relative magnitude of the crack surface displace- 
ments. The severity of this normal interfacial crack is proportional to these 
displacements although the functional form of this relationship is not defined. 

For the case of interfacial fracture, Model 111, a total energy analysis 
resulted in values of G for the mixed mode displacement. Stress intensity 
factors were not determined. The value of G shown in Figure 16 with Model 
I11 is a maximum value and corresponds to G for the initial increment of 
crack extension along the interface. The value of G decreased with crack 
length as shown in Figures 12 and 13. The stress intensity factors for all the 
other models were converted to G’s using (3). This was done to allow com- 
parison of the other models to Model I11 for which only G is known. 

In the third column of Figure 16, all the values of G have been normalized 
to the value of G for Model I where the crack tip is in the resin and is ap- 
proaching the glass. In column four are shown the critical values G,, Table 
111, which have likewise been normalized to the critical value for the resin. 
Normalizing the values in this manner facilitates the discussion of the 
alternative modes of crack progression as the crack approaches the interface. 

Crack propagation in the resin-glass model 

Columns 3 and 4 of Figure 16 contain the normalized values of crack extension 
force for the model along with the normalized critical values. For Model I 
the crack is in the resin and approaching the resin-glass interface. The values 
have been normalized to this model and hence _C = _G, and, by definition, 
the crack is propagating. 
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76 C. W. FOWLKES 

The “stress intensity” for Model I1 is much higher than Model I for the 
same external displacement. Although this stress intensity factor for Model 
11 is somewhat fictitious (as discussed previously) it is clear that the stress 
intensity factor will tend to increase and the crack will tend to propagate 
from the position shown in Model I toward the interface with no increase in 
external load. With the crack tip at  the interface the next two modes of 
propagation are along the interface, Model 111, or through the interface and 
into the glass, Model IV. 

Model IV represents a crack which penetrates the glass to  a depth equal 
to 0.1 the width of the glass portion of the model. Since the glass portion of 
the model is a symmetrical half of a two-dimensional glass fiber (Figure 4) 
the crack depth or flaw depth is 0.05 D, where D is the diameter of the fiber. 
Comparing columns 3 and 4 in Figure 16 for Model IV clearly shows that 
if there is a flaw in the glass fiber of 0.05 D, C_ 9 _C, and the crack will propa- 
gate into the glass with no increase in  external load. 

Data given in Ref. 46 indicates that a typical flaw in an actual glass fiber 
used for composite fabrication would be on the order of 0.01 D. In terms of 
Model IV, if such a typical fiber were modeled and if the critical flaw was 
located at the point where the resin crack intercepted the interface, the crack 
length would be only 0.005 times its width instead of 0.1 times the width as 
shown. If it is assumed that the stress intensity factor for Model IV depends 
on the square root of the crack length of the normalized value, G for this small 
flaw would be 0.134 lb/in. This value is still greater than the normalized 
critical value for glass and the crack would therefore still tend to propagate 
through the glass. 

The likelihood of the resin crack intercepting the glass at the exact location 
of a critical flaw is small. Assuming that the crack intercepts the interface at 
a point where the glass is free of large critical flaws an alternate mode of 
crack propagation would be along the interface as represented by Model 111. 

Assuming that the mixed mode crack extension force is divided into GI 
and C,, according to the proportions given in Figure 14 the values of _G, = 
0.0037 Ib/in. and GI, = 0.147 Ib/in. are established. Comparison of these 
normalized values with the normalized critical values shows that G, is the 
controlling factor. Since the values of G are related to  the square root of the 
boundary displacements, if the boundary displacements are increased by 
approximately 2.2 times the initial displacement a crack will propagate along 
the interface. As the crack propagates G changes with crack length as shown 
in Figure 13. An important feature of this curve is the fact that G does not 
decrease very rapidly for the first few inches of crack progression. The 
resistance to  crack extension however becomes smaller due to  the continual 
transition from Mode 11 to Mode I, Figure 14. Thus once the interfacial 
crack is initiated, it will tend to propagate unstably along the interface. Using 
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CRACKS NEAR A BI-MATERIAL INTERFACE 77 

Figures 13 and 14 it is possible to solve for an equilibrium crack length of 
approximately 4.2 inches. 

Looking again at  the glass there are three important effects accompanying 
the interfacial fracture that increase the probability of crack extension into 
the glass. The first is the immediate fact that the boundary loads were 
increased by a factor of 2.2 to initiate the interfacial fracture. This increases 
K by a factor of 2.2 and G by a factor of 4.9 for Model IV which reduces the 
critical flaw size for fracture of the glass and hence increases the probability 
of fracture. 

A second effect of interfacial fracture is illustrated in Model V. If there is 
a flaw in the glass ahead of the resin crack (Model IVj, as the secondary 
crack proceeds along the interface the stress intensity factor associated with 
the flaw in the glass increases. In Figure 16 the value of G for Model 1V (no 
interfacial crack) is 2.64 Ib/in. For the short interfacial crack (Model Vj G 
is 5.4 Ib/in. and for the long interfacial crack G is further increased to  21.9 
Ib/in. Due to  this effect a flaw which was initially stable in the glass might 
tend to propagate after the interface had fractured. 

A third factor is the “size effect.” As the crack proceeds along the interface 
the relative size of the region in the glass subjected to the increasing stress 
becomes larger. The probability of finding a critical flaw in this larger region 
is greatly increased and hence the probability of crack progression into the 
glass is increased. 

These models indicate that cracks can propagate by a discreet two-step 
process, first along the interface and then through the glass while the dis- 
placement of the boundary is held constant. Microscopic examinations of 
unidirectional composites have shown the general pattern of fracture invol- 
ving crack propagation through the matrix to the interface, propagation 
along the interface and eventual propagation through the fiber?* 

Crack propagation in the glass-resin model 

The approach and presentation contained in this section parallels the ap- 
proach used in the previous section. The roles of the glass and resin have 
been interchanged so that the crack in Model T is now assumed to reside in 
the glass and is approaching a glass-resin interface. The rnaterial properties 
of glass were assigned to side 1 of the models and the materials properties of 
resin were assigned to side 2. 

As in the previous case the fracture parameters determined from the finite 
element solution are shown accompanying descriptive sketches of the models 
showing the crack locations, Figure 17. Values of the crack extension force 
in the models have all been normalized by the value of G for Model I where 
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I - Glass 
2 - Resin 

I 

Il 

m 

rn 

Y 

P 

1 88,578 I 7530 1 I .o 1 I .o I 

1 (5743) I (31.7) I(0.0042) 1 (1.0) I 

I 9222 I 1490 I 0.198 I 935 I 

I 9437 I 1560 I 0.207 I 935 I 

[ 10,008 I 1755 I 0.234 I 935 

(NA)  not available 
(I  1 
(2) 
(3) 

(4) Mode I 
( 5 )  Mode P 

values for the crack tip in circle 0 
normalized to the value for glass. 
decreases as the cfack proceeds along 

interface, see Figure 14. 

FIGURE 17 Fracture parameters associated with the various modes of crack propagation 
in the region of a glass-resin interface. 
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CRACKS NEAR A BI-MATERIAL INTERFACE 79 

the crack resides in the glass phase. The critical values, G,, have corres- 
pondingly been normalized to G, for glass, Table 111, and are shown in 
Column 4. 

Comparing the normalized values in columns 3 and 4 for Model I, G = 
G, and hence by definition the crack will tend to propagate. Comparison of 
G for Model I and the “G” for Model I1 indicates that the severity of the 
crack decreases as the interface is approached. A total energy analysis 
between Models I and I1 for the one inch increment of crack extension 
yields a value of C = 0.525 Ib/in. which is between the values of c for Model 
I and G for Model I1 and is evidence that the crack extension force drops 
off as the crack approaches the interface. 

It appears that the crack would arrest at some position ahead of the inter- 
face for the fixed boundary displacement. If the load were increased by some 
indefinite amount the crack would progress to the interface. Assuming that 
the crack does arrive at the interface the two subsequent modes of propaga- 
tion would either be along the interface or into the resin, Models I11 or IV. 

Assuming as before that for the interfacial failure the mixed mode crack 
extension force can be divided as shown in Figure 14, the normalized mode 
I component of G is GI = 0.0154 Ib/in. The critical value for mode I again 
controls the initiation of fracture. The ratio of G,,/G, = 10,800 indicating 
that if the initial displacement on Model I is increased by a factor of Jm 
or about 104, the crack will tend to extend along the interface. In contrast 
with the previous resin-glass model, the crack extension force for this model 
decays rapidly as the crack progresses along the interface, Figure 12. This 
indicates that for this model there will be no unstable interfacial cracking. 
In order for the crack to extend, the load on the model must be continually 
increased above the value for crack initiation. 

Considering the case of crack extension into the resin, Model IV, com- 
parison of the crack extension force to the critical value shows that G,,/G, = 

9440. Thus if there is a flaw of the relative size represented in Model IV and 
if the external displacements are increased by a factor of 49440 c r  ; t c  I t 
97, the crack will propagate into the resin phase. 

Comparing Models 111 and IV it  is seen that the tendency for crack exten- 
sion is about the same for each model. The mode of crack propagation would 
be controlled by the location and relative size of the flaws. If there was a 
large flaw in the resin as represented by Model 1V and no interfacial flaw the 
crack would propagate into the resin. If the resin were free of large flaws the 
crack would slowly propagate along the interface for increasing load. The 
resin starts to arrest the crack since for either mode of crack progression the 
external loads would have to be increased by a relatively large amount. 

Comparing Model V for the two cases of short and long interfacial cracks 
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it can be seen that if there is a flaw in the resin the stress intensity factor for 
this flaw increases as the secondary crack proceeds along the interface. Com- 
pared to the resin-glass case for Model V, Figure 16, this increase in the 
stress intensity factor is small. Thus as the load is increased and as the 
interfacial crack extends, the strongest factors tending to produce fracture 
of the resin would be the increased overall load and the size effect discussed 
previously. 

Summary 

1) Comparing results from Models 1 and I1 for the fixed displacement 
boundary indicate that if the crack is in the low modulus phase it will tend 
to propagate unstably to the interface. If the crack is in the high modulus 
phase it will not propagate to the interface unless the external displacement 
is increased. 

2) The interfacial stresses near the crack face in material 1 always increase 
with increasing R. The y component and the shear stress are most sensitive 
to increases in R while the x component changes more gradually. 

3) In Model I as the crack approaches the interface a:) and 0;') combine 
to produce a maximum principal stress above the plane of the crack. If the 
crack propagates normal to the maximum principal stress these results 
indicate that the crack would branch upward and intercept the interface at 
an oblique angle. Photomicrographs of normal cracks in a glass-resin com- 
positeff8 show that through the glass fiber, R = 20, the crack tends to branch 
upwards as indicated by the analysis. 
4) With Model I1 for R = 20 at d, = 1 inch, a, = 0.7 psi, 0;') = 15 psi 

and ox,, = 1.8 psi. These results are in general agreement with the relative 
interfacial stresses given in the analytical solution by Swenson28. For large 
R, the high values of 0;'' indicate a tendency toward crazing of phase 1 
normal to the interface. For low values of R, a;') is on the same order of 
magnitude as a, which indicates that mode I splitting along the interface 
becomes more probable. The values of a, are also relatively higher at greater 
distances along the interface as R decreases which would tend to produce 
longer interfacial cracks. 

5) Results from Model 111 indicated that when the crack is in the low 
modulus phase, splitting of the crack along the interface is more likely than 
when the crack is in the stiffer phase. 

6 )  The approximate analysis of the fracture mode transition which is 
associated with interfacial splitting indicates that this transition may be an 
important feature of the splitting behavior. Based on these models the 
fracture mode transition can give rise to an equilibrium interfacial crack 
length. 
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CRACKS NEAR A BI-MATERIAL INTERFACE 81 

7) Results from Models 111, IV and V reveal two mechanisms which would 
cause a two-step, interfacial fracture process consisting of interfacial splitting 
followed by fiber fracture. The first mechanism is the mode transition 
discussed above. The second mechanism is the increasing stress intensity 
factor of the flaw in the fiber as the interfacial crack extends. (The size effect 
discussed in the text would also contribute to a two-step process.) 

Concl usions 

1) Recent techniques of finite element fracture analysis can be used to 
solve microfracture geometries which could not be solved previously. 

2) The concepts of linear elastic fracture mechanics when applied to micro 
models provide a basis of rational discussion of some of the interactions 
involved in composite fracture. 

3) The results of microfracture analysis though highly idealized bear some 
relation to observed microfracture behaviors and are a necessary step toward 
rational understanding of the interactions of mechanical and material 
variables. 

Suggestions for continued research 

1)  Problems of this general type should be analyzed using a more refined 
grid and/or more sophisticated elements to arrive at improved estimates of 
the stress intensity factors and stress distributions. The oscillating stresses 
predicted by some analytical solutions should be compared to refined finite 
element solutions. 

2) In this work it was assumed that the micro model could be simply 
abstracted from the composite material structure; the boundaries would 
remain straight and the imposed displacement uniform. In an actual micro 
region there would be considerable interaction with the surrounding structure 
and this interaction would change as the crack progressed. It is within the 
capability of the finite element method to solve this problem. 

For example, the “fixed grip” displacement condition imposed on Model 
I11 led to the result that the crack progressing along the interface would be 
arrested. If the boundary condition had been a fixed load the crack extension 
would undoubtedly have been unstable. In an actual material the boundary 
condition is somewhere between “fixed grips” and “fixed load” which leads 
to some equilibrium interfacial crack length. The determination of this crack 
length would be one of the goals of analyzing an interacting micromodel. 

3) The problem of a crack normal to an interface with the crack tip on 
the interface is complicated and not very well understood. More analytical 
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82 C. W. FOWLKES 

work should be done on model geometries which could be built and tested. 
The main question here is “What is the fracture criterion?” We need some 
kind of stress intensity factor coupled with experimental determination of 
critical values for various material combinations. 
4) A more detailed examination of the mixed mode nature of interfacial 

splitting seems warranted since the extent of interfacial splitting or the 
equilibrium length of an interfacial crack may depend strongly on this mode 
transition. Thus a fracture analysis may be required in addition to a stress 
analysis to gain an understanding of the splitting phenomena. 

5 )  With the exponential growth of computing capacity the solution of 
problems involving large assemblages of micromodels will become feasible. 
Understanding of the effects of material and structural variables, on for 
example, cumulative and non-cumulative failure modes might be advanced 
with the use of these more comprehensive models. 

6) Fracture toughness data on a wider range of constituent materials and 
interfacial combinations in conjunction with improved microfracture analysis 
would allow one to engage in a broad series of microfracture games. These 
games would hopefully result in specific recommendations for optimizing 
composite material toughness and performance. 
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